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Abstract

This paperpresentsa techniquefor learningto assess
terrain traversability for outdoor mobile robot

navigationusing human-embeddebbgic andreal-time

perceptionof terrain features extracted from image
data. The methodology utilizes a fuzzy logic

framework and vision algorithms for analysisof the

terrain. The terrain assessment and learning
methodologyis testedandvalidatedwith a set of real-

world image data acquiredby an onboard vision

system.

1. Introduction

Autonomousexplorationof renpte planetarysurfaces
by outdoor mobile robots, or rovers, is an active
pursuitby NASA and other national spaceagencies.
Similar capabilitiesarepursuedoy defenseagenciegor

unmannedautonomousvehicles. Rovers must have
the ability to operateautcnomously and intelligently

on challengingterrain with minimal interactionwith

remote human operators.Rover navigation systems
must provide a level of “onboard intelligence”
sufficientfor long-rangdraversesn rough, rocky, and
poorly-modelednatural terrain, without exposingthe

rover to undue physicalrisk or situationsthat may
leadto missionfailure.

To ensuremissionsuccesspnboardintelligencemust
be able to assessa rover’s ability to traverseterrain
regionsof varying difficulty en route to designated
locations. To enablerobots to make autonomous
navigationdecisionghat guidethemthroughthe most
traversable regions of the terrain, fuzzy logic
techniques have been developed for classifying
traversabilityusing computervision-basedpeaception
of attributes such as surface roughness,slope, and
discontinuity[1, 2]. This paperpresents fuzzy logic
system designed to automatically infer terrain
traversability from images capturedby a robot's
onboard vision system. Based on the physial
propertief the terrainextractedrom the images(and
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intrinsic knowledgeof rover mechanicalconstraints),
the suitability of the terrainfor traversalis inferred
using a fuzzy logic framework and vision-based
algorithms. The fuzzy classificationof traversability
provides essential perceptual knowledge, which is
utilized by a navigation systemfor robust mobility
throughroughnaturalterrain. This paperfocuses,n
particular,on the enhancemenbf this capability by
applyinga nonlinearoptimization techniquethat aims
to adjustfuzzysystemparameterso achieveperceptual
performanceloselyresemblinghat of a humanexpert
[3]. In thisway, the humanexpertactsas a supervisor
to facilitate the processof teachinga nominal fuzzy
terrainclassifierto mimic humanperception Sections
2 and 3 describethe terrain assessmenaind fuzzy
classification algorithm. Section 4 describesthe
methodologyfor enhancingterrain classification and
Section5 presentshe optimizationresultsobtainedby
using real-worldimagedata.

2. Linguistic Representationof Terrain Features
The first step in classifying the local terrain
surroundingthe robot involves extractingthe terrain
featuresdirectly accountingfor navigation difficulty.
To accomplishthis task we have developeda set of
vision algorithms used to determine slope and
roughnesstwo important attributes that characterize
thedifficulty of terrainfor traversaby a mobile robot.
In this section,we describethe vision algorithmsand
how the slope androughnessaluesproducedby these
algorithms are used to reason about terrain
traversability. More detail on the vision algorithms
canbefoundin [2].

2.1 Terrain Roughnesg&xtraction

Terrainroughnesgefersto the coarsenessnd surface
irregularity of the ground to be traversed.Visual
perceptiorof rock distributionin a viewable sceneis
used to determine a measure of terrain surface
roughness. First, an algorithm for determiningthe
size and concentratiorof rocksin a viewablescends
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appliedto a pair of stereocameraimagestaken from

the robot’s vantagepoint. A horizon-line extraction
programis run that identifies the peripheralboundary
of thegroundplane.This, in effect,perceiveshe line

at which the ground and the landscapedbackdop

intersect.The algorithm then identifies target objects
locatedon the ground plane using a region-growing
method [4], which consists of ground signature
extraction,edgedetection,and obstacleidentification

(largerocks/bouldersand large groups of rocks). In

effect,targetsthat differ from the ground surfaceare

identified and countedas rocks for inclusion in the

roughnessassessment.The effect of this procedureis

illustrated by the sequenceof raw and processed
imagesof naturalterrainin Fig. 1.

Horizon Line Extraction

Original Image

Figurel. Terrainroughnessietermination

Rock Detection

To determinethe number of small- and large-sized
rocks contained within the image, the number of

pixels that comprisea target object are first counted.
Thosetargetswith a pixel count less than a use-

definedthresholdarelabeledas belongingto the class
of small rocks and those with a count above the

threshold are classified as large rocks. All such
labeledtarget objects are then grouped accordingto

their sizesin orderto determinethe small ard large
rock concentrationparameters. Next, the average
separationdistance betweenrocks in the image is

calculated. This calculation provides information
about the relative amount of free spaceavailablefor

traversabetweerrocks. The parameterdor small and
large rock concentration and average separation
distanceare respectivelycharacterizedby fuzzy sets
with linguistic labels{FEW, MANY} and {CLOSE,

FAR} (see[2] for details). The terrain roughness
(normalized)is then representedby three fuzzy sets
with  linguistic labels {SMOOTH, ROUGH,

ROCKY}, definedby membershigunctionsshownin

Fig. 2. Thus, roughnessis derived from the rock

size/concentrationand separationparametersof the

associated image using the fuzzy logic rules
summarizedn Tablel (empty cells 0 no effect on

therule).
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Figure2. Membershigdunctionsfor terrainroughness

Small Large Separation Roughness
Rocks Rocks Distance
FEW FEW — SMOOTH
MANY FEW — ROUGH
— MANY FAR ROUGH
— MANY CLOSE ROCKY

Tablel. Rule-basdor determiningroughness

2.2 Terrain SlopeExtraction

Terrainsloperefersto the averagencline/declineof the
groundsurfaceto be traversed.To obtain the terrain
slopefrom a pair of stereocameraimages,we must
first calculate the real-world Cartesia (X,Y,2)
component®f the groundplaneboundary,or horizon-
line. To determinethe (xy,2) componentsof the
horizon-line, Tsai's cameracalibration model [5] is
used to derive the relationship betweenthe camera
imageandthe real-world object position for a single
camera.The images from both camerasare then
matchedn orderto retrieve3D information.

Determiningthe position of the largestrocks located
alongthe horizon-lineandcenteredvithin both images
allows the identification and extraction of correlated
image points that lie along the horizon-line. These
image points are usedas input for extractionof the
(xy,2) real-world Cartesiancomponents. Depending
on the viewablescenein the pair of stereoimages,
theremay be multiple pairs of such correlatedimage
points. Onceall Cartesiarpointsarecalculatedthey
areusedto computethe averageterrain slope. The
terrainslope(normalized)s representedby threefuzzy
sets with linguistic labels {FLAT, SLOPED,
STEEPY}, definedby membershigunctionsshown in

Fig. 3.
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Figure 3. Membershigunctionsfor terrainslope

3. FuzzyClassification of Terrain Traversability
As a rover traverses natural terrain, images are
periodically acquiredfor traversabilityassessment.In
eachperiod, terrain in the viewable scenemust be
classifiedoncethe relevantfeaturesareextracted. To
this end,we havedeveloped set of fuzzy logic rules
that classify the traversabilityof the terrain basedon
the roughnessand slope measuregxtractedfrom the
givenimagedataset.

The procesof embeddincghumanexpertknowledgeof

terrain traversabilityin a fuzzy logic system begins
whenthe knowledgebase(rule baseand membership
functions)is developedThe fuzzy setsdefinedabove
for roughness and slope allow these terrain

characteristicio be representecbasedon gradesof

membership,as opposedto a 0 or 1 value. These
linguistic variablesareusedasinputsto a set of fuzzy

rulesusedto classifytheterrain. The output from the

rule baseis atraversabilityindex which representshe

relativeterrainquality asit relatego the rover's ability

to safelytraverseterrainin the viewablearea. Given

imageryof the terrainin the vicinity of the rover, a

traversabilityindex 1 is definedas a function of the

terrainslope and the terrain roughnessdeterminedas
describedabove[l]. It is representedby threefuzzy

setswith linguistic labels{LOW, MEDIUM, HIGH}

definedby the membershigunctionsshownin Fig. 4.

Thus,aregon of low traversabilityis unsafeor very

difficult for the rover to traverse,while a highly

traversable region is safe and relatively easy to

traverse.Thenominalset of fuzzy logic rules usedto

infer terrain traversability based on roughnessand
slopeis summarizedn Table 2. If the local terrain

surrounding the rover is partitioned into adjacent
sectorqe.qg., front, left andright) the traversabilityof

eaclsectorcanbe determinedusing the corresponding
imagery.
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Figure4. Membershigunctiors for traversability

SMOOTH ROUGH ROCKY
FLAT HIGH MEDIUM LOW
SLOPED HIGH MEDIUM LOW
STEEP LOW LOW LOW

Table2. TerrainTraversabilityRule-base

Initially, the fuzzy membershipfunctions and rules
used to determineterrain traversability are defined
accordingto an expert’s subjective perceptionand
intuition. Using this subjectiverepresentatiorof the
expert'sknowledgeencodedn the knowledgebase,the
resulting fuzzy systemachievesa terrain assessment
behaviorthat roughly approximateghat of the human
expert. In orderto achievea better approximationof
the expert'oehavior,and therebymore closely mimic
human expertreasoning,the fuzzy system must be
fine-tuned by either modifying the membership
functions, the rule-basepr both. In the next section
we focus our attention on the input membership
functions, for terrainroughnessand slope, nominally
definedasshownin Figs.2 and3.

4. Mimicking Human Classification of Terrain

The ultimate goal for a fuzzy classification system
usedin practiceis to closelymimic the humanexpert's
judgementof the terrain traversability. In this way,
mission operatorscan be reasonablyconfident that
decisions made by a navigation system, that
autonomoushguidesa rover at a remotelocation, are
sound enoughto preserverover safety and ensure
missioncompletion. To achievesuch confidence the
systemis trainedusingthe expertasa supervisor.

In this work, the objectiveis to improve the nominal
fuzzy system by optimal tuning with respectto a
human expert’s perceptual classification of terrain,



basedon imagescapturedby a robot vision system.
Thereare severalparametersearchand optimization
techniqueshat aresuitablefor this problem,including

geneticalgorithms artificial neuralnetworksand more
conventionaloptimization algorithms[6]. We employ
a conventional optimization algorithm, called the
simplex method,to improvethe fuzzy system'sability

to mimic human expert reasoning by optimizing

selectedmembershipfunction parametersthat define
terrainroughnessnd slope. In particular,we apply
the DesignOptimization Procedurg DOP), which was
introducedn [3] andlaterappliedin [7] to designand
optimize fuzzy logic controllers. The DOP is based
on quantitative performancecomparsons betweena
human expert and a fuzzy system addressing a
commonproblem. It employs simplex optimization
to achieveiterativeimprovementof the fuzzy system
toward human performance.The application of the
DOP o the traversabilityassessmergroblemrequires
determinationof a terrain classification strategy and
formulation of a suitable performanceindex (PI) that
indicates the error between the fuzzy system
classificationand the humanexpertclassification A

suitableterrainclassificationstratgy was presentedn

section 3; we will now describethe optimization
procedurefor improving the nominal systemand the
formulationof a Pl to drive thatprocedure.

4.1 OptimizationProcedure

The fuzzy system classificationis determinedusing

the nomind (pre-optimized) set of membership
functions and fuzzy rules defined above, while the

human classification is provided by an expert.
Performanceimprovementsin the fuzzy system are

obtained in a two-phaseprocessdescribed below.

Views of theterrainfrom the rover’svantagepoint are

presentedb the expert,first in the form of raw black-
and-whitecameramagesandlater as processedamera
images(sedeft andright imagesof Fig. 1). The fuzzy

system always classifies traversability based on

quantitativevalues of roughnessand slope that are

extractedfrom eachprocesseccameraimage (i.e. a

reduceddata set). Variations betweenthese distinct

classificationsare minimized by the optimization

technique.

In the first phase,the expert classifiesthe terrain
traversabilityby viewing raw pre-processetimagesand
assessinghe ability of therobot to traversethe terrain
in eachmage. A quantitativeclassificationscalefrom
zero(low traversability)to ten (high traversability)is
usedfor the terran traversabilityindex. A valuein

this rangeis furnishedby the expert,and also inferred
by the fuzzy system,for eachimagein a training set
containing images of varied terrain. Traversability
indicesprovidedby the expertarestoredin a database.
The absolute error between the fuzzy system's
classification (FC) andthe humanclassification(HC)
of eachimageis usedto computethe Pl as an integral
squareckrror. In the secondphaseof the process,an
attemptis madeto furtherimprove the performanceof
the fuzzy systemby allowing the expertto classify
traversabilityusing processederrain images(such as
the right-most image of Fig. 1), which representa
reduceddataset similar to that actually processedy
the fuzzy system. The optimizaion procedureis
applied againfor this caseto yield a new level of
classificationperformanceguantified by the samePI.
The basic flow of information is illustrated in the
block diagramof Fig. 5.

-
| p—
Terrain THG , Traversability
Images Database
te— —
T T
Fealure | 2°°° —/FUZ2Y TOMMaIN %ec| oy ation
Extraction| rougnness, | Traversability Algorithm
| Classifier
Improved MF Selected MF
parameters parameters

Figure5. Procedurafiataflow for optimization.

In either phase whenthe fuzzy system'sclassification
is closeto the humanclassificationthe Pl approaches
zero;whentheerroris large, the Pl is high. The Pl is
an important metric in the designapproachsince it
drivesthe optimization of membershigunctions such
that the inferencesmadeby a fuzzy system closely
matchinferencesmadeby the humanexpert. Thus,
the problemis similar in structureto a supervised
learning problem whereinthe optimization technique
is usedto adjustnumericalparametershat define the
membershigfunctions for roughnessand slope, such
that the fuzzy systemis encouragedto mimic the
expert'sclassification. Four fuzzy set parametersper
input membershipfunction are consideredin the
optimization. For a trapezoidal fuzzy set, these
include the valuesin the universeof discoursethat
boundits supportandcore/nucleu$8]. The parameters
continueto be adjusted(thus refining the meaningof
the input linguistic variables) until the Pl is



minimized or reachesa steady and non-decreasing
value. This signifies convergenceo a tuned set of
membershipfunctions that result in a classification
behaviorthat more closely mimics that of the human
expert Afterthesystemis trained,it is usedfor real-
time terrainclassificaibn in outdoorrovernavigation.
The classificationdoneby the expertin the second
phase is later compared with the phase one
classificationand the classificationperformedby the
fuzzy system. The comparisons between these
classificationsarevaludle in determiningif the fuzzy Figure 6. Outdoormobile robotwith vision system
logic systemhasaccesso the information requiredfor
a correct classification(i.e. an “observability” issue)
andif the correctlogic hasbeenused. In general;if an
expertcannotprovide a correct assessmentith only
the information being presentedo the fuzzy logic
system,then it becomesvery difficult to train the
system. Under these circumstancesthe information
being presentedo the fuzzy logic system is not
adequateto make a good decision. Additional
informationfrom the original imageis required. If the
expertcandeterminewhat information he/sheis using
to make a correctassessmenthen this information
must also be processedand presentedo the fuzzy
logic system. Also, if the expertusesany addiional Figure 7. Rawandprocesseterrainimages
logic with this information, then that logic mustalso
beincludedin thefuzzylogic system.

5. Results

In this section,we presentesultsof applyingthe DOP
to the nominal fuzzy terrain classifier presentedin

section3. Thetest vehicleis a commercially available
mobile robot calledthe Pioneer-AT(All Terrain). It is

outfitted with a custom onboard vision system
comprised of three stereo pairs of commercially
availableCCD camerasCamerasare mounted on a
raisedplatform (Fig. 6), and orientedfor a combined 250
field of view of 18(° in front of therover. A setof 17

imagesof naturalterrainscenewas usedas a training

set. Two representativémages and their processed

Figure8. Optimizedmembershigunctions:phasel

270

260r-

versions are shown in Fig. 7 — traversability is 250
classifiedby the expertasHIGH for the top imageand 0
LOW for the bottomimage. ® a0
Optimized membershigunctionsfor roughnessand 230
slopefor thefirst phasgbasedon classificationof raw
imagespresentedo the expert)are shownin Fig. 8. 2
The associated history of the Pl duing the e
optimization/learningprocessis shown in Fig. 9. 190, s s 0 T o0
Results for the second DOP phase (based on iterations
classificationof processedmagesby the expert) are Figure9. Optimizationperformancéistory: phasel

shownin theFigs.10and11.



Figure 10. Optimizedmembershigunctions:phase2
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Figure11. Optimizationperformarmehistory: phase2

Theseresults revealthat the terrain assessmentules

aremostsensitiveto roughness.This is apparengfter

observingthatthe optimizedmembershigunctionsfor

slope (Figs. 8 and 10) are nearly identical to the

nominal set in Fig. 3. Optimized roughness
membershipfunctions have been tuned significantly

relativeto the nominal setin Fig. 2, yielding relative
performancemprovementf 15% and 16% in phases
1 and 2, respectively. Considerationof a nearly
commonsetof input information in phase2 by the

expertandfuzzysystemyielded the betterperformance
enhancemends expected. As canbe seenin Figs. 9

and 11, phase2 beginswith a betterPI (i.e., closer
agreementbetweenexpert and fuzzy system) and

convergesn lesseiiterationsthan phasel. Thericher

the setof input data,the moreapparenthe disparity is

betweenhuman and robot perception. To overcome
the disparity and enhancerobot perceptionthrough
supervisedearningit may be necessaryo reducethe

observabilityof the humansupervisor.

6. Conclusions

This paperdescribesa methodologyfor enhancinga
fuzzy system's capacity for mimicking human
perception. Resultsof its applicationto the terrain

classificatiorproblemfor computervision-basedobot

navigation are presented. The paper presentsthe

contextin whichfuzzylogic techniquesareappliedby

explainingthe approachto extractingterrainattributes
from cameraimages, using theseattributes as fuzzy

inputs to infer a traversabilityindex, and actng on

this perceptual knowledge to facilitate intelligent

autonomousavigation. Resultsrevealingthe extent
of the classification performance improvements
achieved using the approachare discussed. The
underlying optimization approachcan be generally
appliedto fuzzy systemsof both the Mamdani and
Takagi-Sugeno-Kantype [8]. The generaldescription
of the methodology and its practical application
permitsone to assesdts utility for enhancingfuzzy

systemperformancen otherdomainsof interest.
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